A Brief Review

Consider a linear, homogeneous, constant coefficient second order equation

\[\frac{d^2 x}{dt^2} + a \frac{dx}{dt} + bx = 0. \]

The characteristic polynomial corresponding to this equation is

\[r^2 + ar + b = 0 \]

whose roots are \(r_1 \) and \(r_2 \) where

\[r_1 = \frac{-a + \sqrt{a^2 - 4b}}{2} \quad r_2 = \frac{-a - \sqrt{a^2 - 4b}}{2} . \]

We will consider three distinct cases (depending on the value of \(a^2 - 4b \)):

I. Two distinct real roots.
If \(0 < a^2 - 4b \) there are two real distinct roots \(r_1 \neq r_2 \) and the homogenous solution is

\[x_h(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}. \]

II. A double root.
If \(a^2 - 4b = 0 \) there are two equal roots \(r_1 = r_2 \) and the homogenous solution is

\[x_h(t) = c_1 e^{rt} + c_2 t e^{rt}. \]

III. Complex conjugate roots.
If \(a^2 - 4b < 0 \) there are two complex conjugate roots

\[r_1 = \alpha + i\beta \quad r_2 = \alpha - i\beta \]

where \(\alpha = -\frac{a}{2} \), \(\beta = \frac{\sqrt{4b - a^2}}{2} \) and \(i \) is the square root of -1. The homogenous solution is

\[x_h(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t). \]

Examples:

1. Consider the differential equation \(\frac{d^2 x}{dt^2} - \frac{dx}{dt} - 6 = 0 \). The characteristic polynomial is
\[r^2 - r - 6 = 0. \] The roots of the characteristic polynomial are
\[
> \text{solve}(r^2-r-6=0);
\]
\[3, -2 \]
so the solution of the equation is \(x_h(t) = c_1 e^{3t} + c_2 e^{-2t}. \)

2. Consider the differential equation \(\frac{d^2 x}{dt^2} + 6 \frac{dx}{dt} + 9 = 0. \) The characteristic polynomial is
\[r^2 + 6r + 9 = 0. \] The roots of the characteristic polynomial are
\[
> \text{solve}(r^2+6*r+9=0);
\]
\[-3, -3 \]
so the solution of the equation is \(x_h(t) = c_1 e^{-3t} + c_2 t e^{-3t}. \)

3. Consider the differential equation \(\frac{d^2 x}{dt^2} + 4 \frac{dx}{dt} + 5 x = 0. \) The characteristic polynomial is
\[r^2 + 4r + 5 = 0. \] The roots of the characteristic polynomial are
\[
> \text{solve}(r^2+4*r+5=0);
\]
\[-2 \pm i, -2 - i \]
Note, Maple writes \(i \) for \(\sqrt{-1} \), so the solution of the equation is
\[x_h(t) = e^{-2t} \left(c_1 \cos(t) + c_2 \sin(t) \right). \]

4. Consider the initial value problem \(\frac{d^2 x}{dt^2} + 4 x = 0, x(0) = 1, \frac{dx}{dt}(0)=1. \) The characteristic polynomial is \(r^2 + 4 = 0. \) The roots of the characteristic polynomial are
\[
> \text{solve}(r^2+4=0);
\]
\[2i, -2i \]
so the general solution of the equation is \(x_h(t) = c_1 \cos(2t) + c_2 \sin(2t). \) We now use the initial conditions to solve for \(c_1 \) and \(c_2. \)
\[
> \text{sol}:=c[1]*\cos(2*t)+c[2]*\sin(2*t);
\]
\[
> \text{sol} := c_1 \cos(2t) + c_2 \sin(2t)
\]
\[
> \text{eq1}:=\text{subs}(t=0,\text{sol})=1;
\]
\[
> \text{eq1} := c_1 \cos(0) + c_2 \sin(0) = 1
\]
\[
> \text{eq2}:=\text{subs}(t=0,\text{diff(sol,t)})=1;
\]
\[
> \text{eq2} := -2 c_1 \sin(0) + 2 c_2 \cos(0) = 1
\]
\[
> \text{solve}([\text{eq1},\text{eq2}],[c[1],c[2]]);
\]
\[
> \text{solve}([\text{eq1},\text{eq2}],[c[1],c[2]]) = \left\{ c_1 = 1, c_2 = \frac{1}{2} \right\}
\]
so the solution is \(x(t) = \cos(2t) + \frac{\sin(2t)}{2}. \)

\textbf{Undetermined Coefficients}
This method applies to special classes of nonhomogeneous second order equations. It is **crucial** that the homogeneous problem have constant coefficients.

Consider a nonhomogeneous constant coefficient second order equation

\[
\frac{d^2 x}{dt^2} + a \frac{dx}{dt} + bx = f(t).
\]

If the right hand side \(f(t)\) has the form (exponential times a polynomial times a trigonometric polynomial) we guess a particular solution of the same form

\[
f(t) = e^{kt}(a_n l^n + a_{n-1} l^{n-1} + \ldots + a_0)(\cos(\omega t) + \sin(\omega t)).
\]

Then guess a particular solution of the form

\[
x_p(t) = e^{kt}(A_n l^n + A_{n-1} l^{n-1} + \ldots + A_0)\cos(\omega t) + e^{kt}(B_n l^n + B_{n-1} l^{n-1} + \ldots + B_0)\sin(\omega t).
\]

If the above solution \(x_p\) is a solution of the homogeneous equation you need to multiply it by \(t^s\) (\(s\) counts the number of times \(x_p\) is a solution of the homogeneous problem, and for a second order equation \(s\) is either 1 or 2).

Example:

Consider the differential equation

\[
\frac{d^2 x}{dt^2} + 4 \frac{dx}{dt} + 5 x = \cos(t).
\]

The characteristic polynomial is

\[
r^2 + 4r + 5 = 0.
\]

The roots of the characteristic polynomial are

\[
-2 + i, -2 - i
\]

so the solution of the homogeneous problem is

\[
x_h(t) = e^{-2t}(c_1 \cos(t) + c_2 \sin(t))
\]

we now have to find one particular solution of

\[
\frac{d^2 x}{dt^2} + 4 \frac{dx}{dt} + 5 x = \cos(t)
\]

in order to obtain the general solution.

The idea is to find this solution using an intelligent guess. The second derivative of a cosine term is again a cosine term, but the first one is a sine term. Therefore we try an expression

\[
x_p(t) = A \cos(t) + B \sin(t)
\]

as initial guess. The goal is to find the undetermined coefficients \(A\), \(B\) (in \(x_p(t)\)) in such a manner that \(x_p\) is the desired particular solution.

```maple
> restart;
> guess := y(t) = A*cos(t)+B*sin(t);
guess := y(t) = A \cos(t) + B \sin(t)

> param := {A, B};
param := \{A, B\}

> eq := diff(y(t), t$2) + 4*diff(y(t), t) + 5*y(t) = cos(t);
eq := \frac{d^2 y(t)}{dt^2} + 4 \left( \frac{d}{dt} y(t) \right) + 5 y(t) = \cos(t)

> subs(guess, eq);
\frac{d^2}{dt^2} (A \cos(t) + B \sin(t)) + 4 \left( \frac{d}{dt} (A \cos(t) + B \sin(t)) \right) + 5 A \cos(t) + 5 B \sin(t)
```
\[= \cos(t) \]

\[> \text{simplify}(%); \quad 4A \cos(t) + 4B \sin(t) - 4A \sin(t) + 4B \cos(t) = \cos(t) \]

Since \(\cos(t) \) and \(\sin(t) \) are linearly independent, the coefficient \(4A + 4B \) of the cosine on the left hand side of the equation has to be equal to 1 (the coefficient of the cosine on the right), whereas the coefficient \(4B - 4A \) of the sine has to be zero. This leads to two linear equations which we solve by

\[> \text{sloveparam}:=\text{solve}\{4A+4B=1,4B-4A=0\},\text{param}; \]

\[\text{sloveparam}:= \left\{ B = \frac{1}{8}, A = \frac{1}{8} \right\} \]

Thus, \(x_p(t) = \frac{\cos(t) + \sin(t)}{8} \) is a particular solution. We can check this by using the \text{odetest}-command.

\[> \text{odetest}(y(t)=(\cos(t)+\sin(t))/8,D(D(y))(t)+4*D(y)(t)+5*y(t)=\cos(t)); \]

\[0 \]

Therefore the general solution is given as \(x_{\text{gen}}(t) = x_h(t) + x_p(t) \), i.e.

\[x_{\text{gen}}(t) = e^{-2t} \left(c_1 \cos(t) + c_2 \sin(t) \right) + \frac{\cos(t) + \sin(t)}{8}, \text{a fact, which you can also test by inserting this expression into the d.e.:} \]

\[> \text{odetest}(y(t)=e^{-2*t}*(c[1]*\cos(t)+c[2]*\sin(t))+(\cos(t)+\sin(t))/8,D(D(y))(t)+4*D(y)(t)+5*y(t)=\cos(t)); \]

\[0 \]

If in addition we were given initial conditions, we would now use those to solve for the constants \(c_1 \) and \(c_2 \).

\section*{Exercise}

Find the general solution of \(\frac{d^2x}{dt^2} - 3 \frac{dx}{dt} - 4x = 2 \sin(t) \).

\[> \text{restart}; \]

\section*{Exercise}

Find the general solution of \(\frac{d^2x}{dt^2} + x(t) = 2 \sin(t) \).

\[> \text{restart}; \]

\section*{A Trick}

What went wrong? Clearly, \(A \cos(t) + B \sin(t) \) solves the homogeneous problem.

\[> \text{odetest}(y(t)=A*\cos(t)+B*\sin(t),D(D(y))(t)+y(t)=0); \]

\[0 \]

Try the guess \(x_p(t) = t \left(A \cos(t) + B \sin(t) \right) \) and see what you get:

Let us explore this last guess somewhat more. Consider the nonhomogeneous problem
\[
\frac{d^2 x}{dt^2} + p \frac{dx}{dt} + q x(t) = a \cos(\beta t) + b \sin(\beta t)
\]

where \(p\) and \(q\) are real numbers, \(\beta > 0\) and \(0 < a^2 + b^2\). We ask for conditions under which the guess
\[
y(t) := t (A \cos(\beta t) + B \sin(\beta t))
\]
works. To this end we insert \(y\) into the differential equation.

```
> restart;
> y(t):=t*(A*cos(beta*t)+B*sin(beta*t));
```

\[
y(t) := t (A \cos(\beta t) + B \sin(\beta t))
\]

```
> diff(y(t),t$2)+p*diff(y(t),t)+q*y(t)=a*cos(beta*t)+b*sin(beta*t);
```

This yields the following four conditions for \(p\), \(q\), \(A\) and \(B\):

\[
\begin{align*}
 t \cos(\beta t) & : -A \beta^2 + p B \beta + q A = 0, \\
 t \sin(\beta t) & : -B \beta^2 - p A \beta + q B = 0, \\
 \cos(\beta t) & : 2 B \beta + p A = a, \\
 \sin(\beta t) & : -2 A \beta + p B = b.
\end{align*}
\]

> solve({-A*beta^2+p*B*beta+q*A=0, -B*beta^2-p*A*beta+q*B=0, 2*B*beta+p*A=a, -2*A*beta+p*B=b}, {q,p,B,A});

\[
\begin{align*}
 p &= 0, \\
 B &= \frac{1}{2} \frac{a}{\beta}, \\
 q &= \frac{b}{\beta}, \\
 A &= -\frac{1}{2} \frac{b}{\beta}.
\end{align*}
\]

Note that \(a \cos(\beta t) + b \sin(\beta t)\) solves \(\frac{d^2 x}{dt^2} + \beta^2 x(t) = 0\) as the following shows

```
> with(DEtools):
> odetest(z(t)=a*cos(beta*t)+b*sin(beta*t),D(D(z))(t)+beta^2*z(t)=0);
```

\[
0
\]

consequently, one concludes that the guess \(t (A \cos(\beta t) + B \sin(\beta t))\) only works in case that \(A \cos(\beta t) + B \sin(\beta t)\) solves the homogeneous problem.

The Resonance Case
Consider a second order linear differential equation

\[
\frac{d^2 x}{dt^2} + a \frac{dx}{dt} + b x = f(t)
\]

where \(a\), \(b\) are real numbers, and \(f(t)\) has the form \(f(t) = p_n(t) e^{\alpha t} \cos(\beta t) + q_n(t) e^{\alpha t} \sin(\beta t)\) with \(\alpha\), \(\beta\) real numbers and \(p_n\), \(q_n\) polynomials in \(t\) of degree less than or equal to \(n\).

Step 1. Set up standard trial function.

Step 2. Check whether any term solves the homogeneous d.e.
Step 3. If so, multiply by t and go to Step 2.
Step 4. If not, determine coefficients by inserting the improved trial function and its derivatives into the de.

Guesses for Other Forcing Functions
Find a particular solution for the following differential equations.

\begin{itemize}
 \item[a)] \[
 \frac{d^2 x}{dt^2} - \frac{dx}{dt} - 6 x(t) = 10 e^{2t}
 \]

 \[
 > \texttt{restart;}
 \]

 \item[b)] \[
 \frac{d^2 x}{dt^2} - 3 \frac{dx}{dt} = 64 (t^3 - t^2)
 \]

 \[
 > \texttt{restart;}
 \]

 \item[c)] \[
 \frac{d^2 x}{dt^2} + 4 x(t) = 2 t^2 \sin(2t)
 \]

 \[
 > \texttt{restart;}
 \]
\end{itemize}